

ABCs of Plant Pathology

UC Nursery and Floriculture Alliance

Overview

- Introduction to the principles of plant pathology
- Pathogen types and major diseases
- Emerging diseases
- Management strategies

Plant Pathology

- Pathology = study of disease
- Disease = Progressive malfunction
- Can be caused by biotic or abiotic factors

Foundation of Plant Pathology The Disease Triangle

Plant diseases- their occurrence and severity- result from the interactions among the host plant, pathogen, and environment

Disease Triangle

The Disease Triangle: Host Plants

- Anatomy (plant tissues and organs)
- Life cycles (seed, seedling, vegetative, flowering, fruiting)
- Physiology (physical and chemical defenses)
- Genetics
 - Resistant
 - Tolerant
 - Susceptible

- How a host plant reacts to the pathogen.
- Will be useful for identification of disease.
- Symptoms fall into 4 categories:

- Change of Color: Chlorosis
- Cell or Tissue Death: Necrosis
- Water Imbalance: Wilt
- Abnormal Growth:
 - Hypertrophy or hyperplasia: Galls
 - Hypotrophy or hypoplasia: Stunting

Host Plant Symptoms Change of Color: Chlorosis

Erwinia crown rot on Primula

Cell or Tissue Death: Necrosis

Foliar nematode on Anemone

Cell or Tissue Death: Necrosis

Damping-off disease of Alfalfa seedlings

Host Plant Symptoms Cell or Tissue Death: Necrosis

Cytospora Canker on Corkscrew Willow, Salix matsudana

Water Imbalance: Wilt

Eustoma infected with *Verticillium* sp.

Abnormal Growth: Galls

Crown Gall on rose caused by Agrobacterium tumefaciens

Abnormal Growth: Stunting

Chrysanthemum infected by *Fusarium oxysporum*

Disease Triangle

The Disease Triangle

Pathogens

- Living parasites such as fungi, bacteria, virus, and nematodes.
- Infectious and spread
- Abiotic factors (cause "Disorders")
 - Nonliving factors causing physiological malfunctions or damage such as from drought, frost, nutrient deficiency, excessive salts, herbicides, air pollution.
 - Non-infectious and do not spread

Abiotic FactorsNutrient Deficiencies

Abiotic Factors

Air Pollutants

Chlorosis on this mother fern (Asplenium bulbiferum) was caused by chronic ozone exposure.

Necrosis on orchid (right) caused by ozone exposure.

Pathogens

- Fungi
- Bacteria
- Viruses
- Nematodes

Shapes and sizes of pathogens relative to a plant cell.

Pathogen: Obligate parasites Saprophytes

Poplar rust

Penstemon rust

Euphorbia rust

Pathogen: Facultative Parasites/Saprophytes

Botrytis on larkspur

Botrytis on statice

Botrytis on poinsettia

Pathogen movement

Disease Cycle

Fireblight on pear and apple caused by the bacterium Erwinia amylovora

- Signs: structures or products of a pathogen in or on the diseased plant.
- The signs can help diagnose the cause of the disease.

Pathogen: Signs Fungal mycelium and spores

Rose powdery mildew

Fungal sclerotia and mycelia

Dahlia Stem Rot, Sclerotinia sclerotiorum

Bacterial exudates

Bacterial Ooze

Fungi

- Composed of hyphae as basic structure, masses are called mycelium.
- 300,000 species of fungi known
- 78,000 unique fungus-host combinations in US alone

Armillaria mellea

Sclerotinia sclerotiorum on Petunia

Fungi

 Many types of spores, asexual, sexual, and for survival/resistance

Conidia masses on fruit (asexual spore)

Basidiospores (sexual spore of mushrooms)

Conidia on conidiophore (asexual spore)

Fungi

 Enter plant through direct penetration using specialized structures, or through stomates, hydathodes, and wounds.

Vascular Wilts

Caused by Fungi

Vascular wilts caused by fungi

- Very common diseases, many hosts, and specific.
- Some can be good saprophytes.

Fusarium oxysporum f. sp. cyclaminis

Verticillium wilt on Stock

Vessels that conduct water

Vascular wilts caused by fungi

- Prefer warm air and soil (75-86 °F)
- Move mainly by water, tools, infected soil, propagation of cuttings
- Resting spores can survive for years in soil

Fusarium oxysporum in Freesia

Root Rots

Fusarium Root Rot of Bean

Pythium on Asiatic lily (right), healthy plant (left)

Root Rots

Pythium Root Rot

Damping off

Leaf spots caused by fungi

Entomosporium leaf spot on evergreen Pear

Didymellina leaf spot on bearded Iris

Leaf Spots

Entomosporium leaf Spot on Raphiolepsis

Phyllosticta leaf spot on Calla Lily

Cankers caused by fungi

Botryosphaeria Canker in Ficus

Thousand Cankers disease in Walnut

Basal *Phytophthora* canker in Kentia Palm

Fruit Decay caused by fungi

Fruit rot on Orange

Botrytis Bunch Rot on Grapes

Often called gray mold

Pomegranate

Strawberry

Gray mold is one of the most Important diseases of greenhouse crops

Crown Rot of Calceolaria

Gray Mold

Botrytis on flowers

- Weak as pathogen, very opportunistic
- Requires cool moist conditions to thrive
- Can germinate and infect within 6 hours
- Can survive from 28 90°F, prefers 70-77 °F

Botrytis spores on stalks

Botrytis on larkspur cutflowers

Powdery Mildews caused by fungi

Erysiphe euphorbiae on Poinsettia

Euonymous

Characterized by white mycelium mainly on upper surface of leaves

Fungi: Powdery Mildews

Obligate biotrophic parasites. Many with wide host ranges.

Erysiphe lagerstroemiae on Crape Myrtle

Fungi: Powdery Mildews

- Prefer warm days and cool nights (68-86 °F)
- Water not required for spore germination
- Some need high RH (98%), others do not
- Thrives in Greenhouses and California

Podosphaeria aphanis on strawberry leaf

Rusts caused by fungi

- Form pustules with orange spores on leaves, stems
- Generally host specific; may have alternate host

Puccinia spp. on grasses

Puccinia on Chrysanthemum

Rust on rose leaf

Close-up of pustules and spores

Fungi: Wheat Rust with alternate host

Sexual stage on Berberis spp.

Fungi: Armillaria mellea

- Mainly affects hardwood trees and conifers
- Roots decay and tree gradually declines; may eventually topple over.

Mycelium under bark of citrus tree

Fungi: Armillaria mellea

- Rhizomorphs can grow and infect nearby roots
- Can form mushrooms at base of trunk

Rhizomorphs on large root

Oomycetes: the water molds

- The Oomycetes are fungus-like and often still referred to as fungi.
- Water is key to their life cycle and spread often with swimming infectious zoospores
- Oomycete "Fungicides" that are most active usually utilize different modes of action than fungicides.

Root and Root Crown Rot Phytophthora

Damping off or Root Rot Pythium

Root rot on Asiatic lily bulbs

Cotton seedling damping-off

Downy Mildews

- Fairly host specific
- Prefer 40-60°F for growth and RH 90% for spores

Lettuce

Downy Mildews

- Spores usually found on underside of leaves
- White, lavender, or purple spore masses

Bacteria

- Tiny single-celled organisms, 1-3 μm
- Have several shapes and some have flagella for motility

Bacterial colonies of Xanthamonus on nutrient agar

Bacilliform bacterium with polar flagella

Bacteria

- First recognized bacterial pathogen, Erwinia amylovora on pears and apples.
- Bacteria enter plants through wounds, stomates, hydathodes and other natural openings.

Shepard's crook symptom on Toyon

Fire blight on Ornamental Pear

Bacteria: Spots on Leaves and Fruits

Xanthomonas spp. on Pelargonium leaf and tomato fruit

Bacteria: Vascular Wilts

Erwinia on tomato

Bacteria: Galls

Crown gall on Peach (left) and Euonymous (right) caused by *Agrobacterium tumefaciens*

Bacteria: Soft Rots

Bell Pepper

Fastidious Bacteria: Bacterial Scorch

Caused by Xylella fastidiosa

Insect Vectors of Xylella fastidiosa

Leafhoppers such as the Glassy-winged sharpshooter (GWSS),

Homalodisca vitripennis (=H. coagulata)

Symptomatic landscape plant species in CA from which Xylella fastidiosa was detected

Plant Name	Common Name	Strain Group
Ginkgo biloba	Maidenhair Tree	ALS
Lagerstroemia indica	Crape Myrtle	ALS
Liquidambar styraciflua	Liquidambar	ALS
Olea europaea	Olive	ALS
Prunus cerasifera	Ornamental Plum	ALS
Morus alba	White Mulberry	MLS
Nandina domestica	Heavenly Bamboo	MLS
Hemerocallis	Day Lily	OLS
Jacaranda mimosifolia	Jacaranda	OLS
Nerium oleander	Oleander	OLS
Cercis occidentalis	Western Redbud	PD
Prunus avium	Cherry	PD
Prunus dulcis	Almond	PD, ALS
Magnolia grandiflora	Southern Magnolia	PD, OLS

Phytoplasmas

- Bacteria that lack cell wall and flagella
- Vectored by mostly leafhoppers and some psyllids

Peach yellow leafroll

Aster yellows, Delphinium

Viruses

- Composed of nucleic acid, DNA or RNA
- Surrounded by a self-made protective coat protein

Tobacco mosaic virus (Tobamoviruses)

Cucumber mosaic virus

Viruses

- Over 1000 species of plant viruses
- Each species may have many strains
- Named for first host and symptoms
 - <u>Toba</u>cco <u>Mo</u>saic Virus

Virus transmission

Vegetative propagation and grafting Insects

Pruning tools, touching, and other wounding Irrigation water

Fungi, nematodes, seedborne, and pollen

Viruses: Mosaic

Viruses: leaf malformations and stunting

Bean Lettuce Monocots

Viruses: Ringspots / Line Patterns

Nemesia ring necrosis virus

Viruses: Flower Break

No virus

Angelonia flower break virus

Viruses: Fruit Deformation

Potyvirus on yellow squash (lower healthy, upper infected)

Cucumber mosaic virus Pepper

Tomato Spotted Wilt Virus (TSWV)
Impatiens Necrotic Spot Virus (INSV)

Nematodes

- Non-segmented round worms, 250µm-12mm
- Some feed
 externally, others
 internally

Nematodes: Root Knot

Meloidogyne spp on several hosts

Nematodes: Root and Foliar Lesions

Emerging Diseases

- Plasmopara obducens, Impatiens Downy Mildew
- Plasmopara halstedii, Sunflower and Rudbeckia Downy Mildew
- Phytophthora ramorum
- Phytophthora tentaculata
- Liberibacter asiaticus, Citrus greening or Huanglongbing Disease
- Ralstonia solanaceum, Ralstonia Southern Bacterial
 Wilt
- Polyphagous shot hole vectored Fusarium diseases.
- Botryosphaeria canker diseases

Plasmopara obducens Impatiens Downy Mildew

Plasmopara halstedii Sunflower Downy Mildew

Sudden Oak Dead (SOD) and Diseases caused by *Phytophthora ramorum*

Rhododendron

Phytophthora tentaculata

Huanglongbing or Citrus Greening Disease Candidatus *Liberibacter asiaticus*

Asian Citrus Psyllid, vector of HLB

Ralstonia Southern Bacterial Wilt, Ralstonia solanacearum

Disease Triangle

The Disease Triangle: Environment

Includes multiple factors and their interactions

Temperature Humidity Light

Water Soil Wind

Human Activity Fertilizer Chemicals

The Disease Triangle:

Environment: Importance of free water

Botrytis (Gray mold)

Germination, Penetration, Infection *Botrytis cinerea*

Free Water" Needed

Leaf Wetness Duration (LWD) Requirements for Infection of Some Plant Pathogens

Fungus	Disease	Host	Range of LWD Hours
Botrytis cinerea	Gray mold	Strawberry flowers	6 - 32
Colletotrichum coccodes	Anthracnose	Tomato fruit	10 - 50
Phytophthora cactorum	Leather fruit rot	Strawberry fruit	0.5 - 5
Puccinia recondita	Leaf rust	Wheat	9 -15
Pyricularia grisea	Gray leaf spot	Ryegrass	6 - 48
Diasporthe phaseolorum	Stem rot	Soybean	2- 140
Adapted from L. Huber and T. Gillespie (1992)			

- Avoid water on leaf or flower surfaces.
- Avoid increasing water vapor late afternoon or evening.

Management of Leaf and Flower Wetness

"Holding in the heat"holds moisture in too!!

Vent Closed

Warm moist air

At sundown, air cools and relative humidity rises

Purge Cycles: Control RH at night

Repeat to avoid prolonged 100% leaf wetness

Disease Management Strategies

- Use disease-free hosts
- Use non-hosts: resistant varieties and crop rotation.
- Site selection and environmental manipulation
- Cultural practices favorable to the plant, not the pathogen.

Disease Management Strategies

- Vector control (weeds, insects, and people!)
- Plant protection with chemical or biological treatments
- Sanitation

Sanitation: Remove diseased plants

Sanitation

Shoes

Tools

Plants

Sanitizing Soil Before Planting

■.

Temperatures Required to Kill Various Pathogens

Germination, Penetration, Infection Botrytis cinerea

Protectant Fungicides

Germination, penetration and infection

Fungicide applied

Eradicant Fungicides

Control of rose powdery mildew with piperalin

http://ipm.ucdavis.edu

References

http://anrcatalog.ucdavis.edu/

http://anrcatalog.ucdavis.edu

Thank you

ajdowner@ucanr.edu

María de la Fuente

medelafuente@ucanr.edu